Punto Medio en un segmento de Recta (Fórmula)

Si tenemos un segmento de recta cuyos extremos son A(x1, y1) y B(x2, y2) y deseamos conocer la ubicación exacta de su punto medio, es decir aquel punto que divide al segmento en dos partes iguales, debemos de emplear la siguiente fórmula:

P_m\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)

Como seguramente recordará todo punto en el plano posee dos coordenadas, por lo que la primera expresión de la fórmula brinda la posición en X, y la segunda expresión brinda la posición en Y del punto medio.

Ejemplo 1

Sea el segmento de recta con extremos A(-4,8) y B(12,-6) obtenga su punto medio.

Sabemos que x1= -4,  y1= 8,  x2= 12,  y2= -6, por lo que reemplazamos los datos en la fórmula:

P_m\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)

P_m\left(\frac{-4+12}{2},\frac{8+-6}{2}\right)

NOTA. Al tener la expresión 8+-6 aplicamos leyes de los signos, quedando como resultado 8-6:

P_m\left(\frac{-4+12}{2},\frac{8-6}{2}\right)

P_m\left(\frac{8}{2},\frac{2}{2}\right)

P_m \left(4,1\right)

siendo este nuestro resultado final.

Ejemplo 2

Sea el segmento de recta con extremos A(3,-6) y B(-9,2) obtenga su punto medio.

Sabemos que x1= 3,  y1= -6,  x2= -9,  y2= 2, por lo que reemplazamos los datos en la fórmula:

P_m\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)

P_m\left(\frac{3+-9}{2},\frac{-6+2}{2}\right)

NOTA. Al tener la expresión 3+-9 aplicamos leyes de los signos, quedando como resultado 3-9:

P_m\left(\frac{3-9}{2},\frac{-6+2}{2}\right)

P_m\left(\frac{-6}{2},\frac{-4}{2}\right)

P_m \left(-3,-2\right)

siendo este nuestro resultado final.

Ejemplo 3

Sea el segmento de recta con extremos A(1,2) y B(3,4) obtenga su punto medio.

Sabemos que x1= 1,  y1= 2,  x2= 3,  y2= 4, por lo que reemplazamos los datos en la fórmula:

P_m\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)

P_m\left(\frac{1+3}{2},\frac{2+4}{2}\right)

P_m\left(\frac{4}{2},\frac{6}{2}\right)

P_m \left(2,3\right)

siendo este nuestro resultado final.

 

 

 


One Reply to “Punto Medio en un segmento de Recta (Fórmula)”

Deja un comentario...

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

¡Síguenos en redes! 🌐

Facebook Twitter
Youtube Instagram

🆕 Noticias Matemáticas

Finalmente en la materia de Matemáticas, realizaremos el análisis de ... que enriquecerán mucho el conocimiento matemático que ya hemos revisado.
Semana Pódcast habló con el profesor Jeffrey Navarro, quien, a través de la red social TikTok, enseña a sus alumnos retos matemáticos. Aprenda en ...
El Colegio de Bachilleres (Cobach) de San Luis Potosí concluyó la octava edición del torneo matemático Intercobach, el cual se realizó de manera ...
Mientras en el resto de países europeos, es el gobierno de cada uno de ellos la única autoridad en cuanto al manejo de la pandemia, en este país de ...
Tal fue el caso de Jonatan Barrera, un profesor de matemática de Bariloche que cumplió el sueño de ir a su pueblo en bici y hacer 2800 kilómetros ...
Por su parte, en la Inglaterra del siglo XIV, el avance matemático se debía principalmente a los llamados “calculadores de Merton”, un grupo de ...
Alrededor del mundo, los matemáticos se han obsesionado con un gis que, ... Si ya la comunidad científica, particularmente en las matemáticas, ...
El monólogo será un recorrido por la historia de las Matemáticas con las ideas ... Santi García Cremades (Molina de Segura, 1985) es matemático y ...
A %d blogueros les gusta esto: